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TECHNICAL MEMORANDUM

A FIELD STUDY OF SOLID ROCKET EXHAUST IMPACTS
ON THE NEAR-FIELD ENVIRONMENT

L INTRODUCTION

The launch facilitiesfor the Space Transportation System (STS),the space shuttle,

are unique in the sense that copious quantities of water are sprayed into the base region
below the vehicle and into the flame ducts during each launch for the purpose of

dampening the acoustic and initialoverpressure waves generated by the vehicle. At the

Kennedy Space Center (KSC) launch facilities,thisamounts to approximately 900,000

litersfrom when the flow begins (a few seconds prior to main engine ignition)to 10 sec
after lift-off.Ifthe shuttlelaunch facilitiesat Vandenberg Air Force Base are acti-

vated, the flow is expected to be roughly twice as great. Ithas been shown (I)that this
amount of water exceeds the amount that can be vaporized by the exhaust heat. Some of

the excess isatomized, mixed with the exhaust, and resultsin a deposition of hydro-

chloric acid and solidmaterial (mostly aluminum oxide from the solidrocket motors).

The deposition isquite heavy near the launch pad. In trace amounts ithas been detected
as far as 22 km downwind on some occasions. Itsimpact has been characterized by a

number of careful studies conducted at KSC (2-4). The chemistry and ice nucleation

properties of the solidfraction of the deposition are discussed in Refs. (5)-(7).

The properties,location,and behavior of thisdeposition are of interestprimarily

because of the potential for impacting launch pad operations and the near-pad environ-

mental quality. The acid content isgreat enough that itimpacts both vegetation (8)and
animal lifenear the launch facilities(9). Likewise, itcan be highly corrosive to man-

made structures. Ithas also been found (10) that gaseous hydrogen chloride isreleased

into the atmosphere as the deposition dries. This "revolatilization"process isof poten-
tialconcern in both the areas of human health and corrosion control.

This report presents resultsfrom a seriesof fieldstudiesand analysiswhich were

undertaken to help quantify and understand the near-field effects of thisdeposition.

Primary emphasis was given to measuring and understanding the effects at KSC launches

in order to provide a basis for developing reasonable estimates of what to expect from

launches involvingeithernew vehicles or new launch facilities.Measurement and analy-

sistechniques suitableto the situationwere developed. The work developed out of

previous studiesof the far-fieldeffects of rocket exhausts (I). Itwas conducted over a

period of more than 4 years and included fieldstudies at two shuttlelaunches, 41D and
51A. Additional studies of the exhaust cloud properties from these two launches are

reported in Refs. (II)and (12).

An important aspect of thiswork was the use of the Acoustic Model Facilityof

the Test Laboratory at the Marshall Space Flight Center (MSFC). Here a 6.4 percent

scale model of the space shuttleisstaticallyfired to study the acoustic environments

and other phenomena produced during a launch. From May 1982 through April 1984, a

seriesof test firingswere conducted to examine the initialoverpressure (IOP) wave to be

expected from Solid Rocket Booster (SRB) ignitionof the space shuttleat the

Vandenberg Air Force Base launch site(VLS), the acoustic environment of a VLS shuttle
launch, and the acoustic environment of the aft cargo carrierin a KSC launch. Selected

tests from among these were monitored to study the production and properties of acidic

deposition produced during a shuttlelaunch. This provided an important opportunity to



developand test measurementtechniquesand to study depositionformation in the VLS
configuration.

IL BACKGROUND INFORMATION

A. Model Description

In the Acoustic Model Facilitythe shuttleSRBs are modeled by Tomahawk Missile

solidrocket motors manufactured by Morton-Thiokol Chemical Corporation. The motor

contains 175.57 kg of type TP-H-3095 propellant (20.4 percent aluminum) which burns in

approximately 9 sec. Chemically thispropellant is very similar to th_ propellant in the

shuttleSRBs. The a_,erage rnoassflux from the motor isthus 19.5 kg s _ which isa factor
of about 4.096 x I0-_ = 0.064_ smaller than the typical mass flux from the shuttleSRBs.

Actually the mass fluxesof both the model and shuttle motors vary with time during the

burn cycle. Likewise, propellant temperature and changes in shuttleSRB design also

make a difference. The shuttlebegan using higher performance motors with STS-8.

For the purposes of thisstudy, a value of 5560 kg s-I isused as representative of

output from each shuttle SRB. This figurerepresents the average mass fluxin the first

18 to 20 sec following ignitionas computed for the preflightanalysis of mission STS-13.
The output islesslaterin the burn. Before STS-8 the output was about 5400 kg s-1, a

value which isstillwithin the +_5.3percent variation which may occur because of changes

in the temperature of the propellant.

The scalingof the model for acoustic and initialoverpressure studies isbased on

the ratio of mass fluxesfrom the solidmotors. Linear dimensions are scaled by 0.064 so
that areas are scaled by 4.096 x I0-° (0.064 squared);thus the model iscommonly known

as the "6.4% Model." As illustratedin Figure 1, the launch mount including the flame

trenches and launch platform ismodeled in plate steeland "Fondu Fyr," a concrete-like

refractory material. The orbiter and external tank are also modeled to the same scale.

The orbiter model contains three working engines fueled by gaseous hydrogen and liquid

oxygen which were originallyused to model the Saturn J-2 upper stage engine. The
scaling factors for the model are summarized in Table 1.

The most important parameters involved in the formation of acidic deposition in

the launch process are the mass of HCI released, the thermal energy released, and the

volume of cooling water in the cloud/flame trench2system. Note from Table 1 that the
exhaust mass flow rate isscaled by the factor 0.064 = 0.0041. Since propellant compo-

sitionin the model isvery similar to the shuttlepropellant,the HCf and the thermal

energy fluxesscale very closelyto the same factor. To estimate the relative total mass

of HCI and thermal energy, the interactiontime between the shuttleSRM plume and the

on-pad water must be known. From launch photographs, the interactiontime is esti-

mated to be 7 to I0 sec, compared to the 9 sec that the Tomahawk burns.2 On the model,
IOP/acoustic suppression water flow rate isalso scaled by the same 0.064 factor.

However, for tests in the VLS configuration,the water flow time intervalprior to igni-

tion ismuch shorter in the model, lessthan 1 sec, compared to the 15-sec fullscale.

This timing difference isnecessary to maintain the properly scaled cross sectionalarea

in the duct. As aresult, the total volume oofcooling water in the model VLS system is
scaled by a factor much smaller than 0.0645. Water flow into the ducts isillustratedby

Figures 2 and 3; scale factors are given in Table 2.

2



Figure 1.
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"6.4percent model" facilityconfigured for Western

Test Range testing.
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TABLE1. COMPARISON OF MODEL AND FULL-SCALE* PARAMETERS

Parameter Full-Scale n Full x 0.064n Model

Shuttle SRM (one)

Sea Level Thrust (Newtons)

Mass Flow Rate (kg s-1)

Exit Area (m 2)

Expansion Ratio

Exit Half Angle (deg)

Exit Mach Number

Exit Diameter (cm)

Supersonic Core Length (m)

SSME (one)

Sea Level Thrust (Newtons)

Mass Flow Rate (kg s-I)

Exit Area (m 2)

Expansion Ratio

Exit Half Angle (deg)

Exit Mach Number

Exit Diameter (cm)

Supersonic Core Length (m)

13.3 x 106 2 54,700 47,200

5560 2 22.8 21.2

II.3 2 0.0465 0.0406

7.72 0 7.72 7.36

6 0 6 15

2.95 0 2.95 2.81

380 1 24.3 22.7

59 1 3.77 3.35

1.68 x 106 2 6870 6790

472 2 1.93 1.81

4.17 2 0.017 0.0062

77 0 77 8.5

5.4 0 5.4 20

4.234 0 4.234 3.325

230 1 14.7 8.9

54 l 3.5 1.6

*SSME at I00 percent power, high performance SRM. Data are reduced to three

figuressince motor performance varies several percent with time and temperature.

B. Background on Acid Deposition Production

The data presented in Table 2 illustratea criticalpoint relativeto formation of

deposition from the STS exhaust; an excess of water enters the pad/flame trench system
over and above the amount that can be vaporized by the available exhaust heat. The

excess, which isof order 200 kl (50,000 gal)per SRB at KSC, 500 kl (130,000 gal)per SRB

at Vandenberg, interactswith the exhaust plume. Much of thiswater isatomized by the
mechanical shears and turbulence generated by both the Space Shuttle Main Engine

(SSME) and SRB exhaust flows. Itisthen expelled into the near fieldor mixed into the

exhaust "ground cloud," which liftsand blows away with the wind. In thisinteraction,it

scavenges significantquantitiesof SRB exhaust products;gaseous hydrogen chloride and
aluminum oxide particles. The composition and spatialdistributionof thismaterial isof

primary interestin thisstudy.
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The IOP/acoustic suppression water isinjected around the launch mount "holes"at

the base of the vehicle. In the KSC configuration,water isalso injected into the flame

trenches and spread out onto the surface of the mobile launch platform. In both configu-
rations,most of the interactionbetween water and exhaust occurs in the exhaust ducts.

The excess water isejected with the exhaust. At Kennedy, both SRBs are directed into
one duct which empties horizontally toward the north. There are no structures to deflect

the plume upward, but thermal buoyancy causes liftingafter the initialjet decays. The
KSC SRB exhaust duct configuration isshown in Figure 4.

At Vandenberg the situationisquite different. First,each SRB isdirected into a

separate duct, one toward the north and the other south. Second, the ducts are covered

and of a more complex design, as illustratedby Figure 5. The covered portion of the

north duct runs horizontal for 16 m, then upward at an 8-degree angle for 40 m. For the
south duct, the horizontal run is21 m, and the 8-degree run is35 m. Both ducts open

onto an uncovered apron area which extends upward at 15 degrees to ground level.

Beyond the exitof the duct on the north side,the ground level drops gently beginning a
few tens of meters beyond the opening. For the duct opening to the south,it drops

quickly intothe side of a small ravine, then rises fairlyabruptly on the far side to a level
above the top of the apron. The crest on the far side islessthan 300 m from the launch

mount; itselevation issuch that itlieson the projection of the centerline of the 8-
degree portion of the duct.

lII. FIELD TEST RESULTS

A. Observations of Model Firings

The spray pattern of the acidic deposition in the immediate vicinityof the launch

mount isprimarily dictated by the exhaust duct and launch mount design. The projection
angle in the vertical for the material ejected from the north duct was measured on the

March 25, 1983, model firing.This was a 100 percent of baseline water flow, VLS con-

figurationtestwith the vehicle at the zero elevation level(restingon the pad). An 8-m
vertical pole was placed 31.5 m from the vehicle directlyin linewith the north duct.

Test tubes were taped to the pole every half meter, each tiltedtoward the exhaust at

about a 45-degree angle. Figure 6 illustratesthe amount of material deposited in the

tubes as a function of the projection angle above the horizontal relative to the lipof the

apron. The maximum amount of material was found in the 8- to 10-degree range, indi-

cating that the covered portion of the duct controls the elevation angle more than the

15-degree open apron. The distance of the measurement siteto the vehicle,31.5 m,

corresponds to nearly 500-m fullscale (applyinga simple 0.064 scale factor).

In more than half of the 20 test firingsthat were studied,the primary objective of

the measurement effort was to determine the deposition pattern on the ground. All of
these tests were of the VLS configuration with 100 percent of baseline water flow. In

some cases, the vehicle was elevated above the pad to simulate lift-off.Deposition

measurements were made by setting out an array of collectors in the target area and
volumetrically measuring the amount of deposition collected. In the firsttest,plastic

petri dishesand l-literbeakers were tried as collectors. The petri dishes were blown

away by the exhaust and so were not usable. Beakers worked fairlywell,but some of the

exhaust material remained on the side walls rather than running down into the beaker.

Even though the time from rocket firingto analysiswas minimized (typicallyI hr) there

was stillconcern that a substantialfraction of the deposition might evaporate before the

beakers were gathered and the contents measured. Therefore, plasticcups with sealable

z



.Z - ,ZGZ

\
\

9



nr<
w-r
O0 x
zUJ
Wrn
an-

<
>

rr
LU

rr

0

E

¢;

L

°_

¢-

IO



"O
0)

"0

-- 30-
O
o
t-
O

O

D

O

E
t_

2.0-
._>

1.0-

Figure 6.

Deposition Collected on Pole 31.5m from Model.
WTR Baseline Configuration

I I I I I I I
2 4 6 8 10 12 16

Angle above Lip of Trench

It
14

Angular distribution of deposition measured from the horizontal in a
Western Test Range (Vandenberg) model configuration.

11



lids, 8.1-cm diameter by 6.3-cm deep, filled to within about 1 cm of the top with silicone

oil, were used. The oil cups were much more labor-intensive and messy, but they pro-
vided more reliable results. Comparison with the first tests using beakers shows es-
sentially identical results with both methods. The beakers, however, were used only
during February and March when the temperature was 5 to 13 °C and evaporation was

slow. The comparison would probably be less favorable if the beakers were used in
summer.

Figures 7 through 10 display four of the measured deposition patterns, two with

calm or very lightwinds and two with moderate winds. The outside contour shown in

these figuresrepresents the limit of the area completely wetted by deposition,or about

0.I mm of liquiddepth. This contour iseasilylocated in the area to the left-hand side of

the duct centerline because thisarea is paved out to 80 m from the vehicle and perma-

nently marked with a polar coordinate grid. Immediately after a firing,the fullwet/

partialwet boundary was marked in chalk. However, 3 to 4 m to the right-hand side of

the duct centerline,the pavement ends and the area isgrass covered. A broad ditch,5-m

wide by 1.5-m deep, parallelsthe duct centerline with itscenter displaced about 12 m to

the right. In thisarea, and beyond 80 m in alldirections,the fullwet/partial wet bound-
ary must be estimated from the collectorcup data with some lossin precision.

With littleor no wind and the model vehicle at the zero elevation level (restingon
the pad), the fullywetted area extends to about 80 m from pad center. Maximum

breadth occurs at a range of about 50 m and isof order 35 m. To interpretthisas an

expectation for fullscale one must apply a scale factor which, for the sake of simplicity,

we assume to be 0.064. This simple linearscale factor would be expected to apply for a

singlephase, constant density gas jet. In actuality we are dealing with a two-phase flow

with substantialtemperature differences. Thus drag, gravitation,and buoyancy may be
expected to play an important role. The 0.064 factor willlead to an over estimate of

effects in the far field.Scaling the low wind values given above implies an upper limit

range of about 1250 m and a maximum width of about 550 m at 800 m from the pad.

With the vehicle raised above the pad the pattern narrowed and lengthened. At the
maximum vehicle elevation tested,equivalent to 36.6-m (120 ft)fullscale,the fullywet

area extended to about 150 m which corresponds to a 2300-m fullscale upper bound,

measured from the pad center. As a point of comparison, observations at KSC indicate

that the fullywet area extends 600 to 700 m north of the pad center. From a single

observation made with the model inthe KSC configuration,itappears the 0.064 factor

over estimates the length of the wet zone by a factor between 1.3 and 2.1. For rough

"best estimates" a scale factor of (1.7x 0.064) = 0.11 isprobably suitable.

The data set was also analyzed to obtain an indicationof the range from the
vehicle where the maximum depth of deposition may be expected. The location of this

point varied from test to test. The lowest value observed occurred on the March 9, 1983,

test(Fig.9),which was certainlyinfluenced by the wind. The value of 15 m would scale

(x I/0.II) to about 140 m at Vandenberg. The maximum distance of 40 m was observed

on the September 9, 1983, testin a 4 m s-l crosswind (Fig.8). In thiscase the plume

centerline was blown to the side of the main array of collectors so the true maximum

may have been missed. At fullscale,40 m corresponds to about 360 m. The best data

set for the vehicle at zero elevation (the March 25, 1983, test,illustratedin Fig. 7) and

one other poor set show the maximum at 20 m (180-m fullscale). Two testswith the

vehicle elevated slightlygave maxima at 30 m (270-m fullscale). However, since better

than half of the water which becomes deposition isalready in the trenches at L = 0 for

both the Kennedy and Vandenberg launch sites,the actual full-scalepattern willtend to

12



II

o

o

\
\

13



14

o

tO

q)

_J

o
E

o

co

_D

o
o

>,d

L"CJ

0'1.o
_'_
e..- 0

_ 0

Q _

_d

._g



15

h_

,.c

_2u

0
E
c-
o

,-. o
r_

0

c_

o o



16

°_

c-

oo o
co o

o

E;.=

0 .,--,

gs

_ m
0

o'_ I1)

L _

i_ i1)
.1_ e'-

.o e"

e-,._

0

°_

0 _



look likethe low vehicle elevation patterns. Thus at Vandenberg the maximum deposi-

tion depth may be expected at the 200 to 360 m range for calm or lightcrosswind launch

conditions,assuming a 0.11 scale factor.

The deposition from both the model and actual shuttle launches is a solid/liquid
mixture; hydrochloric acid, aluminum oxide granules from the solid rocket motors, bits of
sand, seeds and other debris from the near pad area, and various dissolved trace ele-
ments. For the September 1 and September 9, 1983, model tests, the solid fraction of
the deposition was found to be 11 percent in both tests with standard deviations of 4 and
5 percent, respectively. (The smallest samples were disregarded in obtaining these
figures because the measurement is not believed to be reliable when the total amount of
material is less than 0.5 ml. In the very small samples the solid fraction tends to appear

much larger. Their inclusion in the data would drive the averages to 18 and 13 percent
with standard deviations of 16 and 10 percent.) By comparison, samples from actual

shuttle launches show a greater solid fraction. A single sample collected under oil during
the STS-4 launch was 30 percent solid, 70 percent liquid. During the launch of STS 41D,

samples were taken from an array of oil dishes identical to those used for the model
tests. The average solid fraction for 12 samples was 27 percent with a standard devia-

tion of 10 percent.

Apparently the solidfraction isdetermined by the rate of scavenging and the
amount of time the drops spend in the cloud. At fullscale the drops have much more

time to collectsolidmaterial. At Vandenberg the physical size of the cloud should be

about the same as at KSC, so one would expect about the same solid fraction in the

deposition,about 30 percent, unless the aluminum oxide supply islimited relative to the

amount of water; the amount of water isgreater at VLS.

The data on the acid content of the deposition samples collected from the various
model tests can be summarized as follows:

I. Eleven samples collected in beakers, without oil,in four test firings,allon cold

days. Temperature at test time ranged from 5 to 13 °C: mean acidity = 1.26 normal (N),
std.deviation = 0.20.

2. Samples collected under siliconeoil(Dow Corning 200 Fluid,500 cs) in

"Freezettes," 9-cm diameter cups, from a test on a warm day. Model at "zero level"

elevation,resting on the pad. Fifteen samples from September 9, 1983, test;tempera-

ture = 28 °C: mean acidity= 1.69 N, std.deviation = 0.27.

3. Samples collected by same method as 2 above, but from a test with the model
elevated to the "30-ft" level. Thirteen samples from August 26, 1983, test;temperature

= 32 °C (see Fig. II): mean acidity= 1.64 N, std.deviation = 0.39.

4. Samples collected on warm days by the "milk stand" method. The bottom was

cut out of a cleaned, polyethylene, gallon-sizemilk container that was mounted in an

inverted positionover a sample bottle. The milk container formed a large funnel and the

sample jarscould be quickly capped after the firing.The resultsare summarized in
Table 3.

This data set contains considerable variability which is traceable to several

causes. Some samples taken on or near the 0-degree azimuth show a systematically
lower acid concentration than those from the 180-degree azimuth. Certainly this may be

17



expected because of the additionalwater from the SSME duct that isexhausted in this

direction. Itwas also observed when examining the deposition drops in the oilcups, that

some of the drops were clear liquid(plussolids)and some were definitelya lightgreen

color (plussolids).Both clear and green drops were found together in the same cups. It
issuspected that the color difference isdue to a chemical reaction of the IICIwith some

substance in the solid fraction of the deposition which israndomly mixed intosome drops

and not others. The effect isseen in samples collected well away from the influence of

the SSME duct exhaust and itisnot the effect of dew fallsince the oilcups were usually

deployed in the late morning or afternoon, a few hours before the firing.

TABLE 3. DEPOSITION NORMALITIES FROM "MILK STAND" COLLECTORS

Test Date Temp. (°C) Location Normality

Aug. 26, 1983 32 180 °,25 m 2.07
180 °,30 m 1.94

180 °,40 m 2.63

Sept. I, 1983 33 0°
o' 30 m 1.40

0 ,50 m 1.56
10°, 30 m 0.75

180°,40 m 1.63

Sept. 9, 1983 28 0°o' 25 m 1.70

' 35 m 1.83
o' 45 m 2.19

180 ,25 m 2.20
180 °, 35 m 2.40

180 °, 45 m 2.45

Sept. 15, 1983 27 180 °,30 m 1.84

180°,40 m 1.97
180 °,55 m 2.05

Samples collected with the "milk stands" tend to show a higher acid concentration

than samples collected under siliconeoil.This isprobably the resultof water evapora-

tion from the funnel surface; note that the "milk stands" were only used in the warm

weather tests. To verify the siliconeoilmethod, 20-ml samples of 2.5 N HCI were leftin

sample bottles for I0 weeks, one tightlycapped and the other under 2.3 cm of oil(open

part of the time). When titrated,the acid concentrations were equal within the expected
accuracy of the titration,indicatingthat significantamounts of HCI were not absorbed

into the siliconeoil. Acid concentration of the cold weather samples collected in

beakers islower than the warm weather samples, indicatinga significanttemperature

effect. The beaker samples must have been concentrated somewhat by water evapora-

tion in the 30 to 60 min required to gather and transfer the samples intoclosed bottles,

although at the cold temperatures involved the effect may not have been too great.

However, the mean concentration, 1.26 N, isstilllessthan the samples collected under

oilon warm days, 1.64 and 1.69, but the difference isabout the same magnitude as the
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standard deviations in the data sets. Thusthe temperature effect cannot be precisely
quantified becauseof the scatter in the data. The temperature effect is even more
noticeable whencomparisonis madewith the "milk stand" sampleswhich averaged2.12
N for samplesfrom the 180-degreeazimuth.

Looking at Figure II and the data tabulated in Table 3, it is also noted that there
is a systematic increase in acid concentration with range from the modelwithin each
data set. If the 11 data points from the 4 cold day tests are plotted together, they
likewise show an increase in normality with range. In allcases, the scatter in the data

set islarge compared to this effect;but, considering the complete data set,itappears
that the increase isof the order of 0.02 N/m.

B. Shuttle Launch Observations

A small fieldprogram designed to verify HC1 revolatilizationwas conducted at

KSC in conjunction with two launches in the late summer and fallof 1984. A time-

resolved,spatially-averaged measurement of the total HCI concentration was desired to

provide a general picture of the post-launch work environment on the pad. Hydrogen

chloride can occur as eithergas or as aerosol in combination with water, so simultaneous

measurements of both forms are required. Both gas and aerosol measurements, and
measurements of the amount of deposition near the pad, were made after the firstlaunch

studied,STS 41D. For the second launch,STS 51A, only HCI gas concentrations were
measured. Deposition measurements for the 41D launch willbe discussed first,followed

by a descriptionof the gas and aerosol measurements.

The same oil-cuptechnique developed for the model tests was used to sample the

acid deposition on and around the launch pad at KSC. For safety reasons personnel must

clear the pad area before fuelingof the external tank begins on the night prior to the

launch, and they cannot return untilthe pad iscleared several hours after lift-off.Thus

the oilcups were deployed and leftuncapped from prior to 8 p.m. the night before and

picked up beginning shortly after noon on the day of the launch. Figures 12 and 13 show

the deployment array. On Figure 12 the sitesare annotated to indicate the appearance
of the oiland the depth of the solidmaterial collected;on Figure 13 they are annotated

with acid normality (when the sample was large enough to obtain a measurement) and

liquiddepth. Both clear and greenish deposition drops were noted in the samples. The

milky appearance of the oilinsome cups was probably due to collectionof fine liquid

spray from the launch; the milkiness was greatest at locations where one might expect

the most intense spray. In some samples the oilremained clear,so the possibilitythat

the milkiness was caused by dew fallcan be discounted in thiscase.

The HCI gas measurement effortwas undertaken as a joint project sponsored by

NASA and the Air Force Engineering and Services Center, Environmental Sciences
Branch, Tyndall Air Force Base, Florida. The work was performed by the Arnold En-

gineering Development Center (AEDC), Air Force Systems Command. Michael G. Scott

and Charles W. Pender, Jr.,of Sverdrup Technology, Inc.(operating contractor for the

propulsion test facilitiesat AEDC) were the principalinvestigators.Lt. Floyd Wiseman,

AFESC/RDVS, was the Project Officer for the Engineering Services Center and Capt.
Frank Tanji,AEDC/DOTR, was Project Manager for AEDC.

A long path infrared absorption technique using a Fourier transform spectrometer
(FTS) was selected for thisstudy because the launch siteison the sea coast and the

background chloride concentrations may be high at times. Thus a gas measurement
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technique which ishighly specificfor HCI was required. In thistechnique, an infrared

lightsource (a high temperature blackbody) isset up at one location and viewed with a

telescope-FTS system from several hundred meters away. The spectrometer measures,
as a function of wavelength, the absorption of the infrared energy caused by the gases

along the path from the blackbody. Since HCI and other gases absorb at specific,known,

wavelengths in the infrared,the presence of HCI can be definitelydetermined and the

quantity measured from the ratio of the strength of the absorption linesto the back-

ground envelope. Laboratory calibrationshowed that the detection threshold for the

system was about 0.5 ppm by volume.

At KSC the exhaust from both SRBs is ejected from a singlehorizontal trench

which opens to the north onto a flatgrass-covered area. The grass extends approximate-

ly 400 m from the launch pad to a lagoon and brush-covered area beyond the launch

complex perimeter. The bulk of the wet acidic deposition from each launch fallsonto

thisgrass-covered area and the lagoon and brush beyond, making thisthe primary source
of HCf revolatilization.Measurements for both the 41D and 51A launches were made

directlyover the grass-covered area within the perimeter fence. The absorption was
measured along a 500-m path oriented east-west, approximately 1.2 m above the surface.

The blackbody was east of the HCf source region; the FTS was on the west side. From 55

to 60 percent of the path was directlyover the HCf source (Fig.12).

The FTS used in this study was a Block Model RS197 co_figured for maximum
sensitivity in the spectral region of interest, 3000 to 2700 cm -1. The system used a
germanium beam splitter on a potassium bromide substrate and an indium antimonide
detector cooled to 77 K. Special precautions in the mounting and housing of the instru-
ment were observed to enable it to withstand the severe acoustic vibration and corrosive

HC1 gas environments produced by the shuttle launch. At regular intervals, the system
would collect 124 interferograms in a 2-rain period, average the digitized data, and store

the results on magnetic tape. The averaged interferograms were transformed into the
spectral domain and the amount of HC1 absorption determined at a later time. Sample
absorption spectra from the laboratory calibration and the field data are illustrated in
Appendix I. The interval between data collection was 20 min for the 41D launch; soft-
ware improvements allowed this to be reduced to 10 min for 51A. For additional details
on the system design, calibration, and operation, the reader is referred to Appendix I.

Hydrogen chloride revolatilizationwas measured after the 41D and 51A launches

as shown in Figure 14. In Table 4, meteorological data and other relevant information

concerning these launches are summarized. The HCI gas concentrations plotted as

functions of time in thisfigureare computed assuming the gas is evenly spread through-

out the 500-m path between the blackbody radiationsource and the FTS receiver. In

actuality,the concentration isexpected to be somewhat greater over the source and less
elsewhere. The precisionof the 41D data is+_19percent, +_15percent for 51A. The

difference isdue to changes in the blackbody radiation source made between launches
which resulted in a factor of 4 improvement in the signal-to-noiseratio.

For both launches, the HCI concentration reached a peak justover an hour after

launch, remained high for an hour or so, then slowly decayed. The measurements were

continued for 3 days following each launch. After 41D, no HCI was detectable after the

7-hr period illustratedby Figure 14. This was not the case after 51A. Trace amounts,
lessthan a part per million,were detected between 8 a.m. and 2 p.m. localtime on the

day following the launch, and again between I0 a.m. and 1 p.m. on the second day after
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the launch. The improvement in signal-to-noiseratio may account for the difference,

but the initialsource strength was alsostronger after 51A.

TABLE 4. ENVIRONMENTAL CONDITIONS FOR41DAND51A LAUNCHES

Condition STS 41D STS 51A

Launch Date

Launch Time (local)

Temperature (Celsius)

Relative Humidity (percent)

Wind Speed at 60 ft.(m s-l)

Wind Direction (degrees)

Aug. 30, 1984 Nov. 8, 1984
08:42 EDT 07:15 EST

26 20

81 59

5 7

106 24

NOTE: The ground was dry during the 41D launch except for possibledue from

the night before. After the 51A launch, the ground was observed to be
quite wet with standing water in some locations,apparently from

thunderstorms in the area during the night.

Since the measurement method discussed above only detects gaseous HCI, the

possibilitythat HCI vaporizes from the ground and then condenses to an aerosol phase

must also be considered. In the aerosol phase, HCf in concentrations of a few parts per

millionshould be readily detected by standard aerosol counting and sizingtechniques,

assuming there isno undue interference from local anthropogenic sources. For example,

I ppm HClby volume isequivalent to about 1.5 mg HCI per cubic r_eter. On the

coast at ground level,sea saltaerosol concentrations of 1 to 15 _g m -° for wind speeds

up to 8 m s-_ may be expected (13). If the relative humidity ishigh, the background
aerosol mass willincrease by deliquescence, but itmust exceed 98 percent relative

humidity before the background would match the HCI mass concentration. Thus the HCf
aerosol should, as a minimum, double the background levelsifthe concentration is1 ppm
or more in aerosol form.

Aerosol number concentration and size distributionswere measured after the 41D

launch using a Gardner counter to provide the total Aitken nucleus count (particles

between 0.01 and 0.2 _ m) and a Climet opticalparticle counter to give the number and

size distributionfor particlesbetween 0.3 and 10 _ m. The raw pulse output from the

Climet was fed to a multichannel analyzer so that the entire size spectrum could be

determined for each sample. The spectrum accumulated by the multichannel analyzer

was dumped to paper tape at regular intervals. The system was housed in a van so that it

could be moved alternatelyupwind and downwind of the source area.

It was intended that the Climet system would operate automatically, beginning

the night before, right through the launch and post-launch period. Unfortunately, an

equipment malfunction prevented thisfrom happening so data were obtained only while

the instrument was manually attended, beginning 1:49 p.m., after access to the pad was

allowed. (The launch occurred at 08:42 EDT.) Eight 70.8-1iterair samples, each drawn

over a 10-min period, were taken downwind from the source area (at the FTS instrument
location)between 1:49 and 3:53 p.m. Then between 4:30 and 5:30 p.m., fivesamples

were taken upwind, at the camera siteon the east side of the pad. Finally,four addi-

tionalsamples were collected downwind at the FTS sitebetween 5:40 and 6:40 p.m. With

the exception of one sample drawn justafter 2 p.m., there was no systematic difference
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between the up- anddownwindsamples;the difference between the averagecountswas
less than the standarddeviation. Thecount in the sampletaken just after 2 p.m. was2.8
times the mean,and the following samplealsoshoweda high count, but traffic in the
area washigh at the time so the high countsare probably dueto road dust.

Thequestion of IICI/H20 aerosol formation hasbeen treated analytically by Rhein
(14) and,more extensively, by P.V.N. Nair et al. (15). Their work indicates that at 20 °C
the threshold for HCI aerosol condensationis I0 ppmat 80percent relative humidity and
I ppmfor relative humidities over 91 percent. Thusexaminingthe gasconcentration
data for the times of the aerosol measurements,aerosol formation wouldnot be expected
under theseconditions, in agreement with the aerosolmeasurements.

IV. HCI REVOLATILIZATION ANALYSIS

The qualitativefeatures of the HCI revolatilizationprocess as illustratedby the

51A and 41D data (Fig.14) may be explained quite simply. As discussed above, the

launch leaves the pad area and the immediate vicinityon the north (SRB exhaust) side of

the pad covered with drops or small pools of hydrochloric acid. Initiallythe acid isfairly
dilute,about 2 N or less. For these low concentrations, the equilibrium vapor pressure of

HC1 is more than fiveorders of magnitude lessthan that of water over the solution.

Thus the initialacid vapor concentration in the air isrelativelylow. However, itin-

creases rapidly as the drops, small ones first,lose water by evaporation and increase in

acidity. When evaporation has proceeded to the point that lessthan a quarter of the
mass of a drop remains, the concentration reaches a value on the order of 11 N and the

acid and water vapor pressures are equal. Thus most of the acid isreleased in the final

stage of evaporation of each drop. Therefore, the ambient HCI vapor concentration rises

to a peak as the majority of drops evaporate, small ones first.Then it fallsslowly,
fueled only by the much slower evaporation of the largestdrops, small pools,and acid in

the surface soillayer.

To develop a quantitative treatment of thisprocess we note firstthe great sim-
ilarityto the problem of evaporation of water or other pure liquidfrom a pool or field.

These problems have been treated extensively in the literaturebecause of theirgreat

importance to hydrology, agriculture,and the study of chemical spills.A fulltreatment

isquite complex, since the evaporation rate depends on many variablesincluding wind

speed, ambient humidity, solar insolationand cloud cover, atmospheric stabilityand

turbulence, terrain features and surface roughness, vegetation cover, etc. The HCf

revolatilizationismore complex, however, because itinvolves the interdependent evapo-
ration of two substances, acid and water.

In thisstudy, an attempt is made only to elucidate the basic nature of the re-

volatilizationprocess and the measurements already discussed. Development of a

detailed revolatilizationmodel isbeyond the current scope of the project. Instead, a

highly simplifiedtreatment of the key aspects of the problem has been developed which

willserve to explain the basic physics. This treatment isexpressed as a simple numerical

model listedin Appendix II. The essentialaspects of the model are as follows:

I. The source area isassumed to be covered initiallywith a Gaussian distribution

of hemispherical drops,allof the same acid concentration. Initialparameters to be

specified:mean radius,total liquidvolume per square meter, standard deviation of size
distribution,and acid content (weight percent).
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2. The rate at which pure water would evaporate from the surface iscomputed

using a simple empirical formula defined in the classicwork by Penman (16). The evapo-

ration rate isexpressed as a function of the following variables:wind speed, ambient

humidity, air temperature, and surface temperature. The surface temperature istypical-

lynot measured and itis fairlydifficultto calculate since itisa function of a number of

parameters. Specifying itas an input isone of the major simplificationsof thistreat-
ment.

3. Beginning with the initialconditions,the evaporation of acid and water is

calculated as a function of time. The evaporation from each drop size class isde-

termined by the number of drops and the microphysical parameters, drop radius,acid

concentration, surface temperature, and an estimate of the near-fieldacid and water

vapor concentrations from the prior time step. At each time step,the totalamount of

material evaporated isnormalized via the ratio of latent heats to the amount of evapora-

tion (water) given by the Penman equation.

4. As the evaporation process proceeds and the surface begins to dry, the total

amount of evaporation given by the Penman equation isadjusted down in proportion to

the ratio of wet to dry surface.

The model outputs the HCI source strength per square meter of surface as a

function of time. The mixing process into the atmosphere isnot modeled. For this

reason, and because ground temperatures were not measured following the launches for

which data were obtained, a directcomparison between model output and measurements

isnot possible. However, comparing Figure 15, which displays the model output for cases

approximating the 41D and 51A post-launch conditions,to Figure 14, itisclear that at

least the basic form of the functional dependence with time iscorrect. If the HCI from

a stripI00 m long by 1 m wide (alignedwith the wind) isassumed to mix into a volume of

air 2 m high by I m wide by U x Dtime long (U = wind speed and Dtime = the time

interval),itisfound that the model output isthe right order of magnitude to explain the

observed results. Examination of Table 5 and Figures 16 through 22, which illustratethe

dependence of the HCI source on the various parameters, shows that the model results

are quite sensitiveto these variables. Thus considerable additionalwork isrequired to

complete validationof thisanalysis. Itispresented here to indicate the types of depen-

dence the HCf revolatilizationisexpected to show on the various parameters and to

serve as a basis for future modeling efforts.

It isanticipated that a complete model of the revolatilizationprocess could be

developed quite readilybased resultsisdesired, itcould be obtained by replacing the

empirical Penman equation with a simple model for evaporation from a pool such as the

modified llleand Springer model as discussed by Kunkel (I7);coupling the results(the
source term) to a Gaussian diffusionmodel likethat discussed in Refs. (18)through (20).

Additional work to improve the numerical methods and reduce the computation time

required by the current model would be well worthwhile.

V. SUMMARY

Whenever large solidrocket motors which produce hydrogen chloride as an exhaust
product are launched or test firedfrom a facilitywhich causes the exhaust to mix with

large volume water sprays (more than can be evaporated by the exhaust heat),an ap-

preciable acid deposition in the near fieldisgoing to result. Some detailsof the produc-
tion mechanism and, more importantly, the scaling are not yet fullyworked out, so
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Case

Designation

BAS47L
(Baseline)

U-VAR 1

U-VAR 2

U-VAR 3
D-VAR 1

D-VAR 2

D-VAR 3

T-VAR 1

T-V AR 2

T-VAR 3

A-VAR 1

A-VAR 2

A-VAR 3

R-VAR I

R-VAR 2

R-VAR 3

V-V AR i

V-VAR 2

V-VAR 3

SGVAR 1

SGVAR 2

SGVAR 3

** No wind.

NOTE:

TABLE 5.

E
¢.)

v

¢6

E

0.08

0.08

0.08

0.08
0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.02
0.04
0.06

CROSS TABLE OF PARAMETER VARIATIONS FOR

,ysIs _ )DEL CJ_SE STEDIES
/

E

E
O E © d v

,_ ._ _ r,.) o o

- l'-t

4 0 0 7 100 0.1

4 1 0 7 100 0.I
4 5 0 7 100 0.I

4 ** 0 7 I00 0.I
4 0 +3 7 100 0.I

4 0 -3 7 100 0.I

4 0 -6 7 I00 0.1

6 0 0 7 I00 0.I

10 0 0 7 100 0.I

0 0 0 7 I00 0.1

4 0 0 7 100 0.I

4 0 0 7 100 0.I

4 0 0 7 I00 0.I

4 0 0 7 100 0.05

4 0 0 7 I00 0.15

4 0 0 7 I00 0.20

4 0 0 7 5O 0.1

4 0 0 7 150 0.I

4 0 0 7 200 0.I

4 0 0 7 I00 0.1

4 0 0 7 I00 0.I

4 0 0 7 100 0.1

The baseline case isthe best fitto the STS 41D post-launch

data. The actual time variationsof air temperature, dew

point, and wind speed were approximated by linearcurve fits.

O

o

o
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2

2

2

2

2

2

2

2
2
2
1
3
4
2
2
2
2
2
2
2
2
2
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quantitative predictions of the amount andlocation of the depositioncan only be esti-
mated for new systems. However, the important parametershave beenidentified and
the estimates shouldbe adequatefor most engineeringapplications, especially since tile
wind andother weather effects maybe expected to generate considerablevariability in
the initial depositionpattern and subsequenteffects.

The life cycle of the acid deposition, once it occurs, is well established by the
field and model scale measurements and the analysis presented here. The initial deposit

is moderately acidic, of order 2 N for space shuttle launches at KSC. As the material
evaporates, the water vaporizes much more rapidly than the HC1 so the acid
concentrates until the water and HC1 vapor pressures are equal, at about 11 N. If the

evaporation potential is high (warm temperatures, low humidity, and moderate to high
wind speeds), the evaporation will proceed rapidly enough that corrosion damage from
direct contact with the liquid will not be immediately evident except on the most

susceptible exterior surfaces. The dominant effect in this case will most often be the
aluminum oxide particulate deposition which is scavenged from the exhaust along with
the HC1. The acid has the effect of increasing the bonding between the aluminum oxide
and structure surfaces, so the surface ends up coated by a powder which is difficult to
remove except by direct mechanical scrubbing. At launch or test sites where this
coating is expected to be a problem, the addition of chemical additives to the facility
water to reduce this bonding should be investigated.

Under meteorological conditions when the evaporation potential is low, experience
has shown that the concentrated deposition remains on painted and metal surfaces long

enough to cause immediate corrosion damage, spotting on automobile chrome for
example, and burn spots on vegetation. The residual aluminum oxide powder is still a
problem under these circumstances, although the drying may be slow enough that the
timely application of sprinkler systems and washdown hoses may alleviate the situation
on the portions of the facilities that can be reached before evaporation is complete.

For Vandenberg SLC-6 and similar facilities where extensive computer and elec-
tronic equipment is located in close proximity to the launch pad, the most serious prob-
lem associated with acid residue from a firing is not likely to be the liquid deposition

itself, but the HC1 gas which evolves as the liquid evaporates. Equipment of this type is
often very sensitive to corrosion damage from gas concentrations in the 10 to 100 parts
per billion level. Exposures of 8 to 10 hours may render a computer system inoperable.
The measurements reported here confirm that HC1 concentrations above this level may
be expected intermittently at the launch site for at least 2 days following a firing. They
also verify that the concentration can exceed 5 ppm for brief periods in the first few
hours; 5 ppm is the threshold limit value for workers; 1 ppm is the public exposure limit.
Dangerous levels in low, enclosed, or partially enclosed structures are also a possibility.
Thus the safety aspects of the HC1 evaporation must not be ignored, although fairly
straightforward precautions should be adequate for most situations.
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1.0 INTRODUCTION

Large amounts of gaseous hydrogen chloride (HC1) are one of the combustion by-products

generated during the launch of the Space Transportation System (Shuttle) by the Shuttle's

solid-propellant rocket boosters (SRB's). Significant quantities of HCI are present in the plume

cloud that lingers near the launch structure. The HC1 gas remains entrained in the atmosphere

near the launch facility, is dispersed by wind, and is deposited on surfaces, such as grass

or ground. (See Ref. 1 for deposition mechanisms.) The HCI gas that remains in the vicinity

of the launch structure, from either initial release or secondary ground release, is important

because it corrodes metals and electronic equipment and because it is a health hazard. The

problem is currently restricted to the Kennedy Space Center (KSC) launch area but will also

be present at Vandenberg when the Shuttle Western Test Range launch facility is activated.

The problem may be exacerbated at Vandenberg because of differences in the launch mount,

sound-suppression water systems, and the proximity of the launch facilities.

The objective of this project was to develop and apply a nonobtrusive absorption technique

employing a Fourier Transform Spectrometer (FTS) to monitor the concentration of gaseous

HCI present near the KSC launch pad for several days after a Shuttle launch. Because of

safety considerations and the requirement to collect data immediately after a launch, the

measurement technique was automated to permit untended operation. The technique was

applied for launches 41D and 51A, Pad 39A (Fig. l), which occurred on August 30, 1984

and November 8, 1984, respectively, at KSC.

To accomplish the objective, a technique based on the absorption of infrared (IR) radiation

by the diatomic HC1 molecules was developed. The characteristic HCI lines are attributable

to absorption of radiation associated with vibrational and rotational transitions within the

HCI molecule. A simple model (Ref. 2) to describe this absorption process is a molecule in

which the individual atoms, held together by chemical bonds, are in vibratory motion along

these bonds, while the entire molecule is rotating. The HC1 is in a state of vibratory motion

brought about by the alternate stretching and contracting of the chemical bond as the hydrogen

and chlorine atoms move away and toward each other, respectively. This vibratory motion

is superimposed on a rotation of the molecule about an axis perpendicular to the chemical

bond. When IR radiation of the proper frequency (i.e. energy) impinges on the molecule

and is absorbed, the vibration and/or rotation states are changed. These changes must satisfy

certain selection rules that give rise to discrete absorption lines. These lines are labeled according

to their frequency. The lines with frequencies greater than that of the band center are said

to be in the R branch, whereas those with frequencies less than that of the band center are

in the P branch (Fig. 2). The individual lines making up the P and R branches are identified

as P(1), P(2), etc. as the frequency of the lines moves away from the band center.
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2.0 TECHNIQUE

A nonobtrusive IR absorption technique was used for monitoring gaseous HCI

concentrations over long paths near the Shuttle launch pad (Fig. 1). The technique involved

use of an IR spectrometer located approximately 500 m from an IR source. An IR spectrum

was acquired at regular intervals (20 min for 41 D, l0 min for 51A) for several days following

the Shuttle launches. The spectra were then inspected to find the magnitude of absorption

because of the presence Of gaseous HCL The concentration of HCI was then caiculated using

the absorption coefficient measured in the laboratory. The spectra I I=i'n¢used to determine

the amount of absorption is in the band centered at 2,886 cm-t. This technique is not

dependent on absolute magnitudes of the spectra; therefore, the intensity of the source is

not relevant to the measurement, and only relative intensities will be presented in this report.

Naturally occurring HCf contains two isotopes of chlorine. They are 35CI and 37C1, in

the ratio of 3 to l, respectively. The IR absorption lines of H35C1 and H37CI are separate,

but very close. A spectrum of these isotopic species is shown in Fig. 2b.

The absorption attributable to HC! gas is well Underst00d and documented The HCI

absorption lines are described by (Ref, 3)

I(X) : Io(X ) exp {- SP3"oL/[(X - Xo)2 + 3,2o]X}

where

Io (k) is the intensity of the incident radiation

I CA) is the intensity of the transmitted radiation

S is the line strength of the absorption line (cm -2 atm- l)

P is the partial pressure of the absorbing species (atm)

3'o is the pressure-broadened half-width at half maximum of the HCI line (cm-i)

ko is the line center of the absorption line (cm t)

L is path length

L

Figure 3 shows the P(I) lines calculated using parameters contained in Ref. 4. The figure

: shows the theoretical absbrption assuming6 ppm HCI over a 500-m path. Because of limited

resolution and the apodization function, the Fourier transform spectrometer (FTS) that

produced the actual spectra influences the spectra shape. The convolution of the instrument

line shape (ILS), using 0.5-cm- 1 resolution and a triangular apodization function, produces

the P(1) line shown in Fig. 3b. As can be seen by comparing Figs. 3a and b, the ILS shortens
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and broadens the spectral lines. (Note: The scales of these plots are not the same.) The effect

is detrimental in that the resultant spectrum is not an accurate portrayal of the true line shape.

However, it is still possible to use the resultant spectra since the effect can be calibrated.

The calibration will be discussed later in this report.

A complicating factor was the presence of additional absorption lines in the spectra obtained

in the field. The effect of neighboring absorption lines is to give the impression of a greater

amount of gaseous HCI. The spectral region of interest included absorption lines attributable

to other molecules present in the atmosphere such as H20 and, Hydrogen Deuterium Oxide

(HDO) (Ref. 5). Therefore, the spectra were obtained at 0.5-cm-i resolution to separate

the HCl lines from the lines of interference. In Fig. 4a the HC1 doublets can be easily discerned

when compared to a background spectrum with no HC1 present, Fig. 4b. Figure 4a is a portion

of a typical spectrum acquired during the 51A launch. This figure shows only the lines within

the P branch. The R branch is unusable because of domination by water vapor bands at

2.7 and 3.2 #m. The P(5) line was used to determine the HCI concentrations because it had

the least interference.

3.0 APPARATUS

The Shuttle launches took place at KSC Pad 39A. Figure I shows the major features

of the launch pad and the AEDC equipment location. The test apparatus consisted of an

F'I'S and a collimated light source with associated control and data acquisition instrumentation.

The sample path length was 500 m. The distance to the launch structure was approximately

350 m. The equipment was located so that the plume deflected by the flame trench passed

through the center of the sample path.

The FTS used was a Block Model RS197 field-rated instrument (Refs. 6 and 7). It was

configured to have the maximum sensitivity possible in the spectral region of interest, 3,000

to 2,700 cm-!. This was accomplished by using a germanium beamsplitter on a potassium

bromide substrate and an indium antimonide detector cooled to 77 K. The detector dewar

had a maximum hold time of 6 hr, so an automatic fill system was developed to replenish

the liquid nitrogen (LN2) from a large auxiliary reservoir. The FTS was rigidly mounted to

maintain optical alignment with the source during the large vibrations associated with the

Shuttle launch. The instrument was enclosed in a Plexiglas ® container that was kept at a

slight positive pressure with a gaseous nitrogen (N2) purge to reduce the possibility of HCI

corrosion (Fig. 5b). The IR radiation entered the FTS through a hole in the Plexiglas container

that matched the entrance aperture of the FTS. An O-ring seal was made between the FTS

and the container. In this way, the FTS was in the same configuration in the field test as

o
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in the calibration. The only difference in the optical paths was that the quartz sample cell

was fitted with IR transmisive quartz windows on each end.

The source units used in launches 41D and 51A were different. Modifications were made

to the equipment for launch 51A because of insight gained during the 41D launch. The original

configuration (See Fig. 6a) used in the 41D launch consisted of a Barnes Model 112017

blackbody with collimator and an Optronics Model i00U, 1,000-w tungsten halogen lamp

with a 25.4-cm Cassegrain telescope used as a collimator. The use of multiple sources was

required to provide adequate intensity since the FTS was located 500 m distant and also as

insurance against optical misalignment from the shock of the booster ignition. In the second

configuration (See Fig. 6b), for the 5 IA launch, three, 30.48-cm spherical mirrors with l,O00-w

tungsten halogen lamps at their focal points were used to provide an intensity increase of

400 percent. In each case the sources were securely mounted and covered with a hood that

provided protection from inclement weather and SRB plume debris. The sources were mounted

so that the optical path between the FTS and sources was approximately 1.2 m above the

ground (Fig. 6b).

The digital data acquisition system collected a set of 124 interferograms (the raw data)

during each sampling period of approximately 2 min. Each set was averaged and stored on

magnetic tape as one data point. A spectrum is obtained by taking the Fourier transform

of the interferogram (Ref. 6). For launch 41D, data points were collected every 20 min. This

time interval was reduced to 10 min for 51A after improvements were made to the software

that reduced the processing time from 17 to 8 min. The data were not converted to the spectral

domain until later in order to permit the collection of additional data during the postlaunch

period.

4.0 CALIBRATION AND ANALYSIS

The absorption technique involved the comparison of spectral data acquired in the field

with similar data acquired in the laboratory. As explained in Section 2.0, calibration data

generated in the laboratory were used in lieu of published HCI absorption coefficients to

negate the influence of the spectrometer instrument line shape.

In the laboratory (Fig. 5a), a previously evacuated quartz sample cell (2.54 diam by 25.4

cm) was filled with mixtures of HCI and dry N2 with known concentrations simulating the

absorption expected following the launch. The concentration of HC1 in the sample cell is

stated in terms of partial pressures (x) with units of psia, and the concentration (y) in the

field is expressed as parts per million (ppm). The relationship is x/14.7 = y/1,000,000. Specific

sample cell concentrations of HCI were achieved using a partial pressure technique in which
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the cell was filled in several stages. Each stage consisted of partially evacuating the cell followed

by bringing it back up to 14.7 psia with dry N2. This process was continued until the desired

partial pressure of HCI was reached. To simulate the field conditions, the concentrations

used in the laboratory were greater by an amount dictated by Beer's law. A simple form

of Beer's law,

ln(I/Io) = -ABC

where

I = transmitted radiation

Io = incident radiation

A = absorptivity (constant at a given wavelength)

B = path length

C = concentration of the absorbing medium

states that the ratio of I/Io will remain constant if C is varied inversely to B. For example,

I/Io is equivalent for a gas at either 1 psia over a l-m path or for l0 psia over 0.1 m.

Therefore, in the laboratory the concentrations needed to be greater by a factor of 1,968

(the ratio of the range in the field, 500 m, to the cell length, 25.4 cm).

A set of nine spectra corresponding to nine calibration pressures were obtained. The x

axis of these curves is in terms of path-averaged concentrations over 500 m. Calibration curves

were obtained by plotting ln(Io/I) versus x for six P lines. The plots are shown in Figs. 7a

through f. The partial pressures of HCI, in psia, used in the test cell were 0.018, 0.036, 0.053,

0.080, 0.120, 0.181, 0.272, 0.544, and 1.633. The conversion relationship to the equivalent

field concentration is given by y (ppm) = 34.6 x(psia).

The analysis of the KSC spectra consisted of measuring the difference between the baseline

and the peak depth of the six P absorption lines. An important feature of this technique

is that atmospheric haze does not invalidate the measurement. Atmospheric scattering

attributable to haze does not affect the procedure since both I and Io (Fig. 2b) are influenced

by the same amount, leaving the ratio I/Io constant. This feature negates the necessity of

performing an instrument or source calibration.

The error associated with the resultant measurements of the 41D launch is estimated to

be + 19 percent (root sum of the squares). This error is caused by an error of + 10 percent

because of pressure transducer uncertainty, ± 10-percent gas-handling technique, ± 10 percent
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in FTS measurement uncertainty, and +8 percent in data handling (digitization and

processing). The error associated with the resultant measurements of the 51A launch is

estimated to be + 15 percent (root sum of the squares). This reduction in error is caused

by the use of the alternate source unit with a higher intensity during the second measurement.

The FTS measurement uncertainty was reduced to _3 percent, and the data handling

uncertainty was reduced to +2 percent.

5.0 RESULTS

The application of the IR absorption technique following the 41D launch showed the

presence of average concentrations of gaseous HC1 as great as 4 ppm (_+ 19 percent). Figure

4a is a representative spectrum taken postlaunch. The HCI lines are clearly apparent among

other atmospheric absorption lines. Figure 8 gives the concentration of gaseous HCI as yielded

by examination of five H35C1 absorption lines. The spread in the results is attributed to the

presence of absorption lines of other molecules. Note that in Fig. 8 the concentration

determined using the P(5) line is less than concentrations determined using the other lines.

In the case of most of the HCI absorption lines, their frequencies are nearly the same as

other atmospheric constituents, such as HDO and H20 (Ref. 5). Therefore, the resultant

absorption is greater than that caused only by the HC1. Since it is difficult to determine how

much of the absorption is caused by the other molecules, the most isolated line, the P(5)

line, was used to determine the HCI concentration.

The concentration peaked approximately 100 min postlaunch, remained high for nearly

1 hr, and then began to diminish. There unfortunately exists a gap in the data because of

a period in which instrumentation was realigned following the loss of one of the sources

during the h-ig-fivibration exper_enceci during ttie launc-h. T-T_e|iistrtihaentati0n Was operated

for three days following the launch, and HCI was detected only in the 6-hr interval following

the launch.

Data obtained from the 51A launch are better in two ways. Data were acquired more

frequently and with an improvement in the signal-to-noise ratio by nearly a factor of four.

During the 5 IA launch, higher HCI concentrations were measured than were detected during

the 41D launch. Figure 9 is a summary of six concentration curves from the P-branch lines.

The curves have a significant scatter caused by absorption attributed to other molecules present

in the sample path. The most isolated line again is the P(5) line. Figure 10 shows the best

estimate of the HC1 concentration. The HCI concentration peaked at about 9 ppm +__15 percent

approximately 1 hr postlaunch, fluctuated for about an hour, and then decayed. In the two

days following the launch, HCI was detected in minute quantities after sunrise until early

afternoon. Long'term, low levels of HCI were visible in the 51A launch either because of
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greater revolatilization attributable to atmospheric and ground conditions or better signal-

to-noise ratio. Atmospheric conditions during the measurement periods of both launches

are available (Refs. 8 and 9).

6.0 SUMMARY

The objectives of the project were completely fulfilled. An unobtrusive absorption

technique to monitor concentrations of gaseous hydrogen chloride was developed and then

applied on two space shuttle launches at the Kennedy Space Center. The technique developed

exploited the intrinsic property of gaseous HCf to absorb IR radiation in specific, narrow,

spectral lines. This IR absorption is measured by a Fourier Transform Spectrometer that

features accuracy and precision without a calibrated source. The minimum detectable

concentration of the instrument is 0.10 ppm with an error of 15 percent (obtained by taking

the square root of the sum of the squares of all possible errors or uncertainties in the

measurement system including calibration). The application portion of this project enabled

refinement of field use of the measurement technique. Increased source radiance and larger

source collimating optics improved the signal-to-noise ratio by a factor of four. Improvement

in data processing software decreased uncertainty by 4 percent.

Measured quantities of gaseous HCI following launches of both 41D and 5 I A displayed

similar trends. The concentration after each launch first increased, then decreased, then

increased to a maximum approximately 100 sec after the launch. The concentration decreased

gradually to less than 1 ppm approximately 10 hr after each launch. The peak concentration

measured was 4 and 9 ppm for 41D and 51A, respectively. For two days after the 51A launch

only, detectable levels were recorded for a period of approximately 6 hr following sunrise.

Atmospheric and ground conditions were different for each launch (Refs. 8 and 9). Additional

considerations in interpreting the concentration levels are that the data are both path and

time averaged, and that the ground scar from the plume makes up approximately 60 percent

of the 500-m sample path length. These considerations imply that the concentration along

the path is not uniform. Additionally only gaseous HC1 will be detected by this technique.

7.0 RECOMMENDATIONS

Improvements to the instrument developed on this project can be made in two areas.

The signal can be increased by enlarging the collection optics on the FTS, and the noise can

be reduced by increasing the data averaging period. Some improvement in calibration accuracy

could be realized by using gas-mixture ratios prepared by the National Bureau of Standards.

The technique developed by this project could use computed tomography with multiple

paths to generate a two-dimensional map of HC1 concentration levels to determine areas of

highest concentration and change over time. This technique would enable determination of

safe areas around solid-propellant rocket motor launch complexes where people, wildlife,
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or machinery may be adversely impacted. Additional analysis (not within the scope of this

project) should be conducted to determine the impact of atmospheric and ground conditions,

aerosol entrapment of HC1, and flame trench cooling water runoff and holding pond

contributions to gaseous HCI concentration levels.
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1 20
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1 40

150
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170

1 80
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200
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220

230

Analysis Program for Estimation of HCI

Revolatilization Source Strength

REM HCL REVOLITIL_ATION PROGRAM: VERSION "HCL41L"

REM INCORPORATES REDUCTION OF EVAPO IN PROPORTION TO SUMAREA.

REM INPUT MODIFIED TO MATCH 41D LAUNCH, POST LAUNCH CONDITIONS.

REM USING LINEAR CURVE FIT FOR Ts, Tdew, AND U°

REM WRITTEN BY JEFFREY ANDERSON, OCTOER 16, 1986

OPTION BASE 1

INTEGER Loop

DIM N(40),A(40),C(40),V(40),Mga(40),M(40),Mtg(600),Mw(40),Pow(40)

DIM CaseS [60]

INPUT "IS INITIALEZED DATA TAPE IN DRIVE :T14? (Y/N)",A$

IF AS="Y" THEN 110

GOTO 80

REM N(1) = number of drops of radius A(I)

REM A(I) = DROP RADIUS IN CM, DROP IS ASSUMED HEMISPHERICAL

REM C(I) = HCL CONCENTRATION IN WEIGHT PERCENT

REM V(I) = VOLUME OF DROP IN CU8IC CM

REM Mga(I) = MASS OF HCL GAS EVAPORATED FROM Ith DROP (GRAMS)

REM M(I) = MOLARITY OF DROP

REM Mtg(T) = TOTAL HCL (grams) EVAP IN THE TIME STEP

REM Mw(I) = MASS OF WATER EVAPORATED FROM ALL RADIUS I DROPS

REM

REM

REM DEFINE CONSTANTS AND INITIAL CONDITIONS

REM

Diffw=.25 !DIFFUSION COEF OF WATER VAPOR, CM^2 /S
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240

25O

260

270

280

290

300

301

302

303

304

310

320

330

340

350

360

370

38O

381

383

384

385

386

390

4O0

410

Diffa=.18 !DIFF COEFFORHCL,CM^2/S, EST FROM ATER VALUE AND

DEPENDANCE ON MOLECULAR WT.

Mhci=36.47

Mh2o=18.01 528 !MOLECULAR WEIGHTS

LINPUT "ENTER CASE IDENTIFIER (60 CHRS MAX)",Case$

INPUT "ENTER SURFACE TEMPERATURE DELTA IN CELSIUS = ",Tdelata

INPUT "ENTER DEW POINT DELTA IN CELSIUS = ",Ddelta

INPUT "ENTER WIND DELTA SPEED AT 2 METERS ELEVATION, (m/s) = ",Udelta

Ts=26.33

Tdew=22.59

U=.52

REM INITIALIZE WITH 41D SPECIFIC DATA

INPUT "ENTER INITIAL ACID CONCENTRATION, WT. PERCENT = ",C

INPUT "ENTER CALCULATION END TIME (minutes) = ",Tf

INPUT "ENTER CALCULATION TIME STEP (minutes) = ",Dtime

INPUT "ENTER INTERVAL FOR EXTRA DATA PRINTOUT (minutes) = ",Dtout

INPUT "ENTER INITIAL LIQUID VOL PER SQ METER = 100 CM^3? ",V

INPUT "ENTER MEAN RADIUS OF INITIAL DROPS = 0.1cm? ",Amean

INPUT "ENTER AREA FACTOR FOR EVAPO REDUCTION (4?)",Ra

INPUT "ENTER NAME FOR OUTPUT DATA FILE",Dfile$

REM FOR Rpt=1 TO 5

REM pt=1 THEN Dfile$="A51uu1"

REM IF Rpt=2 THEN U=2

REM IF Rpt=2 THEN Dfile$="A51uu2"

REM IF Rpt=3 THEN U=4

Einf =0

A=0

Cumlgas =0
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420

430

440

450

460

470

480

490

5OO

510

520

53O

540

55O

56O

57O

580

59O

6OO

610

620

630

640

641

65O

651

652

Cumlw=0

Sumarea=1

Sigma=.08

Da=.0075 I INITIAL BIN SIZE FORRADII

Tsum=0 !

GOSUBPrival

REM

REM

REM CALCULATEINITIAL SIZE SPECTRUM

REM

IN cm

REM

FORI=I TO40

A(I)=I*Da

Pow(I)=-((A(I)-Amean)^2/(2*Sigma^2))

Tsum=Tsum+A(I)^3*EXP(Pow(I))

NEXTI

Numo=V/(2.0944*Tsum) !2/3 PI = 2.0944

Tv=0

FORI=I TO40

C(I)=C

N(I)=Numo*EXP(Pow(I))

V(I)=2.0944*N(I)*A(I)^3

Tv=Tv+V(I)

PRINTERIS 0

PRINTUSING651;I,A(I),N(I),Tv

IMAGEDDD," A(I)=",D.DDDD,"

PRINTERIS 16

N(I)=",DDDDDD.DDD," TOTALV=",D.DDE
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660

670

680

681

682

683

685

686

711

712

713

714

718

720

730

740

75O

760

770

780

790

800

810

820

830

850

860

NEXTI

REM

REM

REM BEGINTIMEDEPENDANTCALCULATIONOFHCLEVAPORATION

FORT=I TOTf STEPDtime

Ts=26.33+.0105*T+Tdelta

Tdew=22.59-.0019*T+Ddelta

U=.5204+.0121*T+Udelta

REMENDOF 41D LAUNCHSPECIFICDATA

REM

REM

RF_M

REM

REM

CALCULATEVAPORPRESSUREANDEVAPORATIONFORPUREWATER

FLEAGLEANDBUSINGER,P 48

Pwr=9.4051-2353/(Ts+273.16)

Esat=.750062*10^Pwr ! mmof Hg.

Pwr=9.4051-2353/( Tdew+273.16)

Edew=.750062*I0^Pwr

REMPENMAN'SBESTFIT EQUATIONADAPTEDTOCURRENTUNITS

REMPENMAN,1947, PROC.ROY.SOC.A, VOL193

Lapse=4.05*60.0*(I+. 526"U)/I 000

Evapo=Lapse*(Esat-Edew) ! (g/(m^2 min) see BOOK8, P9

REM

REM

REM

REM

REM

r
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880

890

891

892

893

894

9OO

910

920

930

940

941

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1 060

1070

1080

1090

Tsum=0

Mtg (T )=0

IF T<30 THEN 900

IF Mtg(T-1 )>.0001 THEN 900

Mtg(T)=0

GOTO 1460

Tw=0

Test=0

FOR J=1 TO 40

Tsum=Tsum+N (J )*A (J)

NEXT J

IF Tsum=0 THEN 1470

Kp=Evapo* Sumarea/Tsum

FOR I=I TO 40

IF A(I)=0 THEN GOTO 1330

GOSUB Mol

Lw=2343 !J/g AT 66 deg C

AI=25.624955

BI=. 014923

Ci=I .079343

La=2343-AI*M(I)+BI*EXP(CI*M(I) )

IF M(I)>8.06 THEN La=2226

REM THESE ARE LATENT HEATS OF VAPORrZATION FOUND BY

REM SIMPLE CURVE FIT TO DATA OF A. C. PLEWES AT 66 DEG C.

REM ONLY THE RATIO OF LATENT HEATS ENTERS SO ONLY ONE

REM TEMPERATURE NEED BE CONSIDERED.

K/qc l=Lw/La*Kp*Dtime
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1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1 230

1240

1250

1260

1 2?0

1280

1 290

1300 REM

1310 Mtg(T)=Mtg(T)+Mga (I)

1320 Tw=Tw+Mw (I )

1330 NEXT I

1340 Cumlgas =Cumlgas +Mtg (T)

1 350 Cumlw=Cumlw+Tw

1360 GOSUB Env

Ratio=Diffw*Mh2o*(Ew-Eldew)/(Diffa*Mhcl*(Ea-Elinf))

REM Ratio IS THE WATER TO ACID EVAPORATION RATIO FOR DROP I.

Delma=Khcl*A(I)/(1+Ratio) ! MASS OF ACID LOST FROM Ith DROP.

Delmw=Khcl*A(I)/(1+I/Ratio) !MASS OF WATER LOST FROM Ith DROP.

Mass=2.0944*A(I)^3*(1+.0049*C(I)) ! INITIAL DROP MASS (GRAMS)

Massa=Mass*C(I)/100

Massw=Mass*(1-C(I)/100)

Newmass-Mass-Delma-Delmw

IF (100*Delma>Massa) OR (100*Delmw>Massw) THEN GOTO 1610

IF Newmass<=0 THEN GOTO 1240

C(I)=(Massa-Delma)*100/Newmass

A(I)=(Newmass/(2.0944*(1+.0049*C(I))))^(I/3)

REM NEW CONCENTRATIN AND RADIUS

GOTO 1260

A(I)=0

Newmass=0

V(I)=Newmass/(1+.0049*C(I))

Mw(I)=N(I)*Delmw

Mga(I)=N(I)*Delma I HCL EVAP: g/sq.meter in Dtime

Test=Test+Mw(I)*Lw+Mga(I)*La

! SUM FOR TOTAL HCL IN TIME INTERVAL

! SUM FOR TOTAL HCL IN TIME INTERVAL

L
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1370

1380

1390

1400

1410

1415

1420

1430

PRINTER IS 0

REM PRINT USING 1390;T,Mtg(T),Tw,Test,Cumlgas,Cumlw

IMAGE DDD.DD,3(2X,MD.DDDE),2(2X,DDDD.DDD)

IF T MOD 10 THEN GOTO 1420

PRINT " T MASS HCL MASS WATER TEST

PRINT USING 1390;T,Mtg(T),Tw,Test,Cumlgas,Cumlw

IF T MOD Dtout THEN GOTO 1440

GOSUB Pout

CUM HCL

1440 PRINTER IS 16

1450 REM

1460 REM

1470 NEXT T

1480 REM

END OF PRIMARY (TIME) LOOP

1490 CREATE Dfile$&" :T14", 14

1500 ASSIGN Dfile$&":T14" TO #I

PRINT #I ;CaseS

PRINT #1;Tf,Dtime,Ts,Tdew, U,C,V,Amean,Ra

FOR I=I TO Tf STEP Dtime

! CREATE FILE

! OPEN FILE

! CLOSE FILE

1510

1520

1530

1540 PRINT #1;Mtg(I)

1550 NEXT I

1560 ASSIGN * TO #I

1570 REM

1571 REM NEXT Rpt

1580 REM

1590

1600

1610

GOTO 2820 ! GO TO END OF PROGRAM ................ >>>>>>>>

REM

REM BEGIN FINE RESOLUTION CALCULATION LOOP

CUM WATER"
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1620

1620

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

I 780

I 790

1800

1810

1820

1830

1840

1850

1860

1870

1880

REM

Na=De Ima/Mas sa

Nw=De Imw/Mas sw

IF Nw>Na THEN Na=Nw

IF Na>1.5 THEN Na=1.5

Loop=2+134.0*Na-36.0*Na*Na

If Na<0 THEN Loop=121

Mw(I)=0

Mga (I )=0

Tivl-Loop

FOR L=Loop TO 0 STEP -I

REM

IF A(I)=0 THEN GOTO 1300

GOSUB Mol

Lw-2343 ! J/g AT 66 deg C

AI=25. 624955

BI=.014923

CI=I •079343

La=2343-AI*M (I) +BI*EXP (CI*M (I)) )

IF M(I)>8.06 THEN La=2226

TOP OF SUB LOOP

REM THESE ARE LATENT HEATS OF VAPORrZATION FOUND BY

REM SIMPLE CURVE FIT TO DATA OF A. C. PLEWES AT 66 DEG C.

REM ONLY THE RATIO OF LATENT HEATS ENTERS SO ONLY ONE

REM TEMPERATURE NEED BE CONSIDRED.

Khcl-Lw/La*Kp*Dtime/Tivl

Ratio=Diffw*Mh2o*(Ew-Eldew)/(Diffa*M/acl*(Ea-Elinf))

Delma-Khcl*A(I)/(1+Ratio) ! ,MASS OF ACID LOST FROM Ith DROP.
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1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

Delmw=Khcl*A(I)/(1+I/Ratio) !MASS

Mass=2.0944*A(I)^3*(1+0049*C(I)) !

Massa=Mass*C(I)/100

Massw=Mass*(1-C(I)/100

Newmass=Mass-Delma-Delmw

IF Newmass<=0THENGOTO2010

C(I)=(Massa-Delma)*100/Newmass

IF C(I)<=0 THENGOTO2010

IF C(I)>50 THENGOTO2010

A(I)=(Newmass/(2.0944*(1+.0049*C(I))))_(I/3)

REMNEWCONCENTRATIONANDRADIUS

GOTO2030

A(I)=0

Mewmass=0

V(I)=Newmass/(1+.0049*C(I))

Mwloop=N(I)*Delmw

Mgaloop=N(I)*Delma ! HCLEVAP:

Mw(I)=Mga(I)+Mwloop

Mga(I)=Mga(I)+Mgaloop

Test=Test+Mwloop*Lw+Mgaloop*La

PRINTUSING2100;T;I;L;A(I);Mga(I)

IMAGE"T=",DDDD.D," I=",DD,"
MGA=",MD.DD

NEXTL

REM

GOTO1300

REM

OFWATERLOSTFROMIth DROP.

INITIAL DROPMASS(GRAMS)

g/sq.meter an Dtime

L=",DDD," A="wD.DDD r "

END OF SUB LOOP
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2150

2160

2161

2162

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

REM

MoI:REM BEGINSUBROUTINETOCALCULATEMOLARITYANDVAPORPRESSURE

IF C(I)>40 THENC(I)=40

IF C(I)<0 THENC(I)=.O00001

S(I)=1 000*C(I)/(Mhcl* (I00-C (I)) )

Aw=53.56-8.1475"M(I)+I. 4352*M(I)A2-.058161"M(I)^ 3-I. 317E-5*EXP(M(I))

Bw=-4.8693+I. 2115*M(I)-. 21394"M(I)^ 2+8.6707E-3*M(I)^3+I. 9812E-
6*EXP(M(I))

Cw=-6753.4+363.79"M(I)-66. 826"M(I) ^2+2. 6591 *M(I)^ 3+5. 6202E-

4*EXP(M( I ) )

Aa=30. 542-I. 3279"M(I)+. 03242"M(I)^ 2+I. 6501 *LOG(M(I) )

Ba=-14694+987.61 *M(I)-24. 308"M(I) _ 2+55. 001 *LOG(M(I) )

Ca=9. 101 6E5-I. 58: E5*M(I)+2045.9*M(I)_ 2+6331.4*LOG(M(I) )+

23439"M(I )*LOG(M(I ) )

REM ABOVE COEF. FROM DINGLE, NASA CR 2928, JAN 1978.

REM WATER AND ACID VAPOR PRESSURES ARE OBTAINED AS FOLLOWS:

Tsk=Ts+273.16

Ew=EXP (Aw+Bw*LOG (Tsk) +Cw/Tsk ) ! mm OF Hg

Ea=EXP(Aa+Ba/Tsk+Ca/Tsk^2) ! mm OF Hg

REM

RETURN ! ENG OF SUBROUTINE Mol

REM

Env: REM SUBROUTINE TO CALCULATE VAPOR PRESSURES NEAR SURFACE

Sum=0

Sumarea=O

Nt=0

FOR I=I TO 40

Sum=Sum+N(I )*A(I)

Sumarea=Sumarea+N (I )*Ra*PI*A (I )*A (I )/I 0000
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2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

Nt=Nt+N(I)

NEXTI

Abar=Sum/Nt

Xbar=(10000/Nt)^ (I/3)

IF Sumarea>1THENSumarea=l

Ewtemp=Tw/(Lapse*Dtime)+Edew

Eatemp=Mtg(T)/ (Lapse*Dtime )+Einf

Eldew=Ewtemp*Abar/Xbar

Eli nf =Eat emp* Abar/Xbar

PRINTER IS 16

IF T MOD 10 THEN GOTO 2510

PRINT "T "; "Ewtemp "; "Ew " ; "Eatemp

" ;"Ea "; "Aba r "; "Xba r"

PRINT USING 2520;T,Ewtemp,Ew,Eatemp,Ea,Abar,Xbar

IMAGE DDD, 2X,4(MD.DE,2X),D.DDDD,2X,D-DDDD

PRINTER IS 0

REM

RETURN ! END OF SUBROUTINE Env

REM

2570 Prival: REM PRINT INITIAL VALUES

2580

2590

2600

2610

2620

2630

2640

PRINTER IS 0

PRINT "DATA FILENAME =";Dfile$,LIN(2)

PRINT CaseS

PRINT "SURFACE TEMP (C) =";Ts

PRINT "DEW POINT TEMP (C) =";Tdew

PRINT "WIND SPEED (m/s) =";U

PRINT "INITIAL ACID CONCENTRATION (wt.percent) =";C

II-ll



2650

2660

2670

2680

2690 PRINT" T MASSHCL
WATER"

2700 PRINTERIS 16

2710 RETURN

2720 REM

2730 Pout: Rem

2740 PRINT" I

2750

2760

2770

2780

2790 NEXTI

2800 PRINTLIN(2)

2810 RETURN

2820 END

PRINT"T final =";Tf;" TIMESTEP(min) =";Dtime

PRINT"INITIAL VOLUMEPERSQMETER(cc) =";V

PRINT"INITIAL DROPRADIUS(cm) =";Amean

PRINT"AREAFACTORFOR EVAPO REDUCTION =";Ra,LIN(2)

MASS WATER TEST CUM HCL

PERIOD PRINT OUT SUBROUTINE

RADIUS VOLUME NUMBER

CUM

MOLALITY WT PER"

PRINT " cm cc/drop per sq m "

FOR I-l TO 40

PRINT USING 2780;I,A(I),V(I),N(I),M(I),C(I)

IMAGE DD,2X,D.DDDD,2X,D.DDDE, 2XtDDDDDD.DDD,2X,DD.DDD, 2X,DDD.DD
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